Easy Step-by-Step Tutorial for a Sentiment Analysis project of IMDB Movie Reviews

Hassan Bellouch
5 min readNov 29, 2022

--

Problem statement

Binary classification problem, with the output is either 0: Negative review or 1: Positive review. The input is text: IMDB Movie Reviews, making this project fall under the umbrella of a subset of Natural Language Processing (NLP) called Sentiment analysis. The objective is to predict the number of positive and negative reviews based on sentiments by using different classification models.

Import necessary libraries

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import nltk
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelBinarizer
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from wordcloud import WordCloud,STOPWORDS
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize,sent_tokenize
from bs4 import BeautifulSoup
import spacy
import re,string,unicodedata
from nltk.tokenize.toktok import ToktokTokenizer
from nltk.stem import LancasterStemmer,WordNetLemmatizer
from sklearn.linear_model import LogisticRegression,SGDClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC
from textblob import TextBlob
from textblob import Word
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

Load data

Download the data from : https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews and put the CSV file in a directory named \Data relative to the path of the notebook.

imdb_data=pd.read_csv('Data/IMDB Dataset.csv')
print(imdb_data.shape)
imdb_data.head(10)

Splitting the training dataset

#train dataset
train_reviews=imdb_data.review[:40000]
train_sentiments=imdb_data.sentiment[:40000]
#test dataset
test_reviews=imdb_data.review[40000:]
test_sentiments=imdb_data.sentiment[40000:]

Text normalization

#Tokenization of text
nltk.download('stopwords')
tokenizer=ToktokTokenizer()
#Setting English stopwords
stopword_list=nltk.corpus.stopwords.words('english')

Removing HTML strips and noise text

#Removing the html strips
def strip_html(text):
soup = BeautifulSoup(text, "html.parser")
return soup.get_text()


#Removing the square brackets
def remove_between_square_brackets(text):
return re.sub('\[[^]]*\]', '', text)


#Removing the noisy text
def denoise_text(text):
text = strip_html(text)
text = remove_between_square_brackets(text)
return text


#Apply function on review column
imdb_data['review']=imdb_data['review'].apply(denoise_text)

Removing special characters

#Removing special characters
def remove_special_characters(text, remove_digits=True):
pattern=r'[^a-zA-z0-9\s]'
text=re.sub(pattern,'',text)
return text

#Apply function on review column
imdb_data['review']=imdb_data['review'].apply(remove_special_characters)

Text stemming

#Stemming the text
def simple_stemmer(text):
ps=nltk.porter.PorterStemmer()
text= ' '.join([ps.stem(word) for word in text.split()])
return text


#Apply function on review column
imdb_data['review']=imdb_data['review'].apply(simple_stemmer)

Removing stopwords

set stopwords to english
stop=set(stopwords.words('english'))
print(stop)

#removing the stopwords
def remove_stopwords(text, is_lower_case=False):
tokens = tokenizer.tokenize(text)
tokens = [token.strip() for token in tokens]
if is_lower_case:
filtered_tokens = [token for token in tokens if token not in stopword_list]
else:
filtered_tokens = [token for token in tokens if token.lower() not in stopword_list]
filtered_text = ' '.join(filtered_tokens)
return filtered_text


#Apply function on review column
imdb_data['review']=imdb_data['review'].apply(remove_stopwords)

Normalized train and test reviews

#Normalized train reviews
norm_train_reviews=imdb_data.review[:40000]
norm_train_reviews[0]
#Normalized test reviews
norm_test_reviews=imdb_data.review[40000:]
norm_test_reviews[45005]

Bags of word model

It is used to convert text documents to numerical vectors or bag of words.

#Count vectorizer for bag of words
cv=CountVectorizer(min_df=0,max_df=1,binary=False,ngram_range=(1,3))
#transformed train reviews
cv_train_reviews=cv.fit_transform(norm_train_reviews)
#transformed test reviews
cv_test_reviews=cv.transform(norm_test_reviews)

print('BOW_cv_train:',cv_train_reviews.shape)
print('BOW_cv_test:',cv_test_reviews.shape)
#vocab=cv.get_feature_names()-toget feature names

Term Frequency-Inverse Document Frequency model (TFIDF)

It is used to convert text documents to matrix of tfidf features.

#Tfidf vectorizer
tv=TfidfVectorizer(min_df=0,max_df=1,use_idf=True,ngram_range=(1,3))
#transformed train reviews
tv_train_reviews=tv.fit_transform(norm_train_reviews)
#transformed test reviews
tv_test_reviews=tv.transform(norm_test_reviews)
print('Tfidf_train:',tv_train_reviews.shape)
print('Tfidf_test:',tv_test_reviews.shape)

Labeling the sentiment text

#labeling the sentient data
lb=LabelBinarizer()
#transformed sentiment data
sentiment_data=lb.fit_transform(imdb_data['sentiment'])
print(sentiment_data.shape)

Split the sentiment data

#Spliting the sentiment data
train_sentiments=sentiment_data[:40000]
test_sentiments=sentiment_data[40000:]
print(train_sentiments)
print(test_sentiments)

Modelling the dataset

Let us build logistic regression model for both bag of words and tfidf features

#training the model
lr=LogisticRegression(penalty='l2',max_iter=500,C=1,random_state=42)
#Fitting the model for Bag of words
lr_bow=lr.fit(cv_train_reviews,train_sentiments)
print(lr_bow)
#Fitting the model for tfidf features
lr_tfidf=lr.fit(tv_train_reviews,train_sentiments)
print(lr_tfidf)

Logistic regression model performance on test dataset

#Predicting the model for bag of words
lr_bow_predict=lr.predict(cv_test_reviews)
print(lr_bow_predict)
##Predicting the model for tfidf features
lr_tfidf_predict=lr.predict(tv_test_reviews)
print(lr_tfidf_predict)

Accuracy of the model

#Accuracy score for bag of words
lr_bow_score=accuracy_score(test_sentiments,lr_bow_predict)
print("lr_bow_score :",lr_bow_score)
#Accuracy score for tfidf features
lr_tfidf_score=accuracy_score(test_sentiments,lr_tfidf_predict)
print("lr_tfidf_score :",lr_tfidf_score)

Print the classification report

#Classification report for bag of words 
lr_bow_report=classification_report(test_sentiments,lr_bow_predict,target_names=['Positive','Negative'])
print(lr_bow_report)

#Classification report for tfidf features
lr_tfidf_report=classification_report(test_sentiments,lr_tfidf_predict,target_names=['Positive','Negative'])
print(lr_tfidf_report)
Output:
precision recall f1-score support

Positive 0.75 0.75 0.75 4993
Negative 0.75 0.75 0.75 5007

accuracy 0.75 10000
macro avg 0.75 0.75 0.75 10000
weighted avg 0.75 0.75 0.75 10000

precision recall f1-score support

Positive 0.74 0.77 0.75 4993
Negative 0.76 0.73 0.75 5007

accuracy 0.75 10000
macro avg 0.75 0.75 0.75 10000
weighted avg 0.75 0.75 0.75 10000

Confusion matrix

#confusion matrix for bag of words
cm_bow=confusion_matrix(test_sentiments,lr_bow_predict,labels=[1,0])
print(cm_bow)
#confusion matrix for tfidf features
cm_tfidf=confusion_matrix(test_sentiments,lr_tfidf_predict,labels=[1,0])
print(cm_tfidf)
[[3768 1239]
[1249 3744]]
[[3663 1344]
[1156 3837]]

Stochastic gradient descent or Linear support vector machines for bag of words and tfidf features

#training the linear svm
svm=SGDClassifier(loss='hinge',max_iter=500,random_state=42)
#fitting the svm for bag of words
svm_bow=svm.fit(cv_train_reviews,train_sentiments)
print(svm_bow)
#fitting the svm for tfidf features
svm_tfidf=svm.fit(tv_train_reviews,train_sentiments)
print(svm_tfidf)

Model performance on test data

#Predicting the model for bag of words
svm_bow_predict=svm.predict(cv_test_reviews)
print(svm_bow_predict)
#Predicting the model for tfidf features
svm_tfidf_predict=svm.predict(tv_test_reviews)
print(svm_tfidf_predict)

Accuracy of the model

#Accuracy score for bag of words
svm_bow_score=accuracy_score(test_sentiments,svm_bow_predict)
print("svm_bow_score :",svm_bow_score)
#Accuracy score for tfidf features
svm_tfidf_score=accuracy_score(test_sentiments,svm_tfidf_predict)
print("svm_tfidf_score :",svm_tfidf_score)
svm_bow_score : 0.5829
svm_tfidf_score : 0.5112

Print the classification report

#Classification report for bag of words 
svm_bow_report=classification_report(test_sentiments,svm_bow_predict,target_names=['Positive','Negative'])
print(svm_bow_report)
#Classification report for tfidf features
svm_tfidf_report=classification_report(test_sentiments,svm_tfidf_predict,target_names=['Positive','Negative'])
print(svm_tfidf_report)
              precision    recall  f1-score   support

Positive 0.94 0.18 0.30 4993
Negative 0.55 0.99 0.70 5007

accuracy 0.58 10000
macro avg 0.74 0.58 0.50 10000
weighted avg 0.74 0.58 0.50 10000

precision recall f1-score support

Positive 1.00 0.02 0.04 4993
Negative 0.51 1.00 0.67 5007

accuracy 0.51 10000
macro avg 0.75 0.51 0.36 10000
weighted avg 0.75 0.51 0.36 10000

Print the confusion matrix

#confusion matrix for bag of words
cm_bow=confusion_matrix(test_sentiments,svm_bow_predict,labels=[1,0])
print(cm_bow)
#confusion matrix for tfidf features
cm_tfidf=confusion_matrix(test_sentiments,svm_tfidf_predict,labels=[1,0])
print(cm_tfidf)
[[4948   59]
[4112 881]]
[[5007 0]
[4888 105]]

Multinomial Naive Bayes for bag of words and tfidf features

#training the model
mnb=MultinomialNB()
#fitting the svm for bag of words
mnb_bow=mnb.fit(cv_train_reviews,train_sentiments)
print(mnb_bow)
#fitting the svm for tfidf features
mnb_tfidf=mnb.fit(tv_train_reviews,train_sentiments)

Model performance on test data

#Predicting the model for bag of words
mnb_bow_predict=mnb.predict(cv_test_reviews)
print(mnb_bow_predict)
#Predicting the model for tfidf features
mnb_tfidf_predict=mnb.predict(tv_test_reviews)
print(mnb_tfidf_predict)

Accuracy of the model

#Accuracy score for bag of words
mnb_bow_score=accuracy_score(test_sentiments,mnb_bow_predict)
print("mnb_bow_score :",mnb_bow_score)
#Accuracy score for tfidf features
mnb_tfidf_score=accuracy_score(test_sentiments,mnb_tfidf_predict)
print("mnb_tfidf_score :",mnb_tfidf_score)
mnb_bow_score : 0.751
mnb_tfidf_score : 0.7509

Print the classification report

#Classification report for bag of words 
mnb_bow_report=classification_report(test_sentiments,mnb_bow_predict,target_names=['Positive','Negative'])
print(mnb_bow_report)
#Classification report for tfidf features
mnb_tfidf_report=classification_report(test_sentiments,mnb_tfidf_predict,target_names=['Positive','Negative'])
print(mnb_tfidf_report)
               precision    recall  f1-score   support

Positive 0.75 0.76 0.75 4993
Negative 0.75 0.75 0.75 5007

accuracy 0.75 10000
macro avg 0.75 0.75 0.75 10000
weighted avg 0.75 0.75 0.75 10000

precision recall f1-score support

Positive 0.75 0.76 0.75 4993
Negative 0.75 0.74 0.75 5007

accuracy 0.75 10000
macro avg 0.75 0.75 0.75 10000
weighted avg 0.75 0.75 0.75 10000

Print the confusion matrix

#confusion matrix for bag of words
cm_bow=confusion_matrix(test_sentiments,mnb_bow_predict,labels=[1,0])
print(cm_bow)
#confusion matrix for tfidf features
cm_tfidf=confusion_matrix(test_sentiments,mnb_tfidf_predict,labels=[1,0])
print(cm_tfidf)
[[3736 1271]
[1219 3774]]
[[3729 1278]
[1213 3780]]

Let us see positive and negative words by using WordCloud.

Word cloud for positive review words

#word cloud for positive review words
plt.figure(figsize=(10,10))
positive_text=norm_train_reviews[1]
WC=WordCloud(width=1000,height=500,max_words=500,min_font_size=5)
positive_words=WC.generate(positive_text)
plt.imshow(positive_words,interpolation='bilinear')
plt.show

Let us see positive and negative words by using WordCloud.

Word cloud for positive review words

#word cloud for positive review words
plt.figure(figsize=(10,10))
positive_text=norm_train_reviews[1]
WC=WordCloud(width=1000,height=500,max_words=500,min_font_size=5)
positive_words=WC.generate(positive_text)
plt.imshow(positive_words,interpolation='bilinear')
plt.show
a wordcloud for positive review words

Word cloud for negative review words

#Word cloud for negative review words
plt.figure(figsize=(10,10))
negative_text=norm_train_reviews[8]
WC=WordCloud(width=1000,height=500,max_words=500,min_font_size=5)
negative_words=WC.generate(negative_text)
plt.imshow(negative_words,interpolation='bilinear')
plt.show
Word cloud for negative review words

--

--

Hassan Bellouch
Hassan Bellouch

Written by Hassan Bellouch

0 Followers

Data Scientist

No responses yet